Myogenic origin of the hypotension induced by rapid changes in posture in awake dogs following autonomic blockade.
نویسندگان
چکیده
The "push-pull" effect denotes the reduced tolerance to +G(z) (hypergravity) when +G(z) stress is preceded by exposure to hypogravity, i.e., fractional, zero, or negative G(z). The purpose of this study was to test the hypothesis that an exaggerated, myogenically mediated rise in leg vascular conductance contributes to the push-pull effect, using heart level arterial blood pressure as a measure of G tolerance. The approach was to impose control (30 s of 30 degrees head-up tilt) and push-pull (30 s of 30 degrees head-up tilt immediately preceded by 10 s of -15 degrees head-down tilt) gravitational stress after administration of hexamethonium (5 mg/kg) to inhibit autonomic ganglionic neurotransmission in seven dogs. Cardiac output or thigh level arterial pressure (myogenic stimulus) was maintained constant by computer-controlled ventricular pacing. The animals were sedated with acepromazine and lightly restrained in lateral recumbency on a tilt table. Following the onset of head-up tilt, the magnitude of the fall in heart level arterial pressure from baseline was -11.6 +/- 2.9 and -17.1 +/- 2.2 mmHg for the control and push-pull trials, respectively (P < 0.05), when cardiac output was maintained constant. Over 40% of the exaggerated fall in heart level arterial pressure was attributable to an exaggerated rise in hindlimb vascular conductance (P < 0.05). Maintaining thigh level arterial pressure constant abolished the exaggerated rise in hindlimb blood flow. Thus a push-pull effect largely attributable to a myogenically induced rise in leg vascular conductance occurs when autonomic function is inhibited.
منابع مشابه
Cardiovascular Effect of Dorsal Periaqueductal Gray During Lipopolysaccharide-induced Hypotension
Introduction: The central mechanism related to the cardiovascular response to lipopolysaccharide (LPS)-induced hypotension is not entirely known, but it is suggested that numerous brain areas such as dorsal periaqueductal gray (dPAG) are involved in this process. In the current work, the cardiovascular effect of the dPAG during LPS-induced hypotension is investigated. Methods: The study animal...
متن کاملFamilial Amyloid Polyneuropathy Type IV (FINNISH) with Rapid Clinical Progression in an Iranian Woman: A Case Report
Familial amyloid polyneuropathy (FAP) type IV (FINNISH) is a rare clinical entity with challenging neuropathy and cosmetic deficits. Amyloidosis can affect peripheral sensory, motor, or autonomic nerves. Nerve lesions are induced by deposits of amyloid fibrils and treatment approaches for neuropathy are challenging. Involvement of cranial nerves and atrophy in facial muscles is a real concern i...
متن کاملCardiovascular Effect of Cuneiform Nucleus During Hemorrhagic Hypotension
Introduction: The underlying mechanism responsible for the cardiovascular response to hemorrhage (HEM) is still unknown; however, several brain areas, such as the cuneiform nucleus (CnF) have shown to be involved. In this study, the cardiovascular effect of the CnF during HEM was evaluated. Methods: The animals were divided into the following groups: 1. Vehicle; 2. HEM; 3. Cobalt chloride (CoC...
متن کاملبررسی الکتروفیزیولوژیک سیستم عصبی خودکار در بیماران دیابتی بیمارستان شریعتی، 1381
Autonomic nervous system dysfunction in diabetics can occur apart from peripheral sensorimotor polyneuropathy and sometimes leads to complaints which may be diagnosed by electrodiagnostic methods. Moreover glycemic control of these patients may prevent such a complications.Materials and Methods: 30 diabetic patients were compared to the same number of age and sex-matched controls regarding to e...
متن کاملEffect of autonomic blockade on ventricular repolarization shortening: response to behavioral stimulus in paced dogs.
Autonomic tone has been suggested to be a significant determinant of ventricular repolarization duration with both rate dependent and independent effects. Using the His bundle-paced dog, a model that eliminates the need for QT correction factors, we explored the rate-independent effects of sympathetic and parasympathetic blockade on ventricular repolarization shortening following an excitatory ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 105 6 شماره
صفحات -
تاریخ انتشار 2008